Single-photon emitters (SPEs) are crucial components in the realm of quantum technology, acting as microscopic lightbulbs that emit only one photon at a time. These unique structures play a vital role in various applications such as secure communications and high-resolution imaging. The Discovery of SPEs in Hexagonal Boron Nitride In 2015, scientists made a groundbreaking
Science
Quantum physics has opened up a world of possibilities in terms of understanding the microscopic properties of materials. High-precision sensing techniques are crucial in delving deeper into the quantum realm, and quantum-gas microscopes have emerged as powerful tools for this purpose. These devices offer the ability to produce images of quantum gases with exceptional resolution,
The concept of coupled oscillations may not be widely recognized, but it is a fundamental phenomenon in nature. These coupled harmonic oscillators can be found in various systems, from mechanical structures like bridges to chemical bonds between atoms, and even gravitational interactions between celestial bodies. The understanding of coupled oscillations has far-reaching implications in fields
The mass of a neutrino at rest is a significant question that has been puzzling physicists for a long time. Neutrinos are crucial in nature and play a central role in the world of particle physics. Recently, a team led by Klaus Blaum from the Max Planck Institute for Nuclear Physics in Heidelberg has made
When utilizing a microscope to view biological samples, it is essential to consider the disturbance caused by the different mediums present. The light beam traveling through the lens of the objective can be altered if it encounters a medium distinct from the sample. For instance, if a watery sample is observed with a lens surrounded
The advancement of microscopy techniques has revolutionized the field of biological research, allowing scientists to explore the intricate world of viruses, proteins, and molecules at a cellular level. However, traditional microscopy methods often come with limitations in terms of resolution and sample preparation. Researchers at the University of Tokyo have recently made a groundbreaking development
The review article published in Reviews of Modern Physics by Félix Casanova, Prof. Albert Fert, and colleagues from the Nanodevices group at CIC nanoGUNE delves deep into the current state of electrical control of magnetism. Albert Fert, a renowned physicist and Nobel Prize winner, has been instrumental in revolutionizing hard disk technology through his discovery
The precise measurement of electrical resistance is crucial in various industries, including industrial production and electronics. Even the smallest deviations can have a significant impact on complex systems such as high-tech sensors, microchips, and flight controls. Researchers at the University of Würzburg have developed a new method that can improve the accuracy of resistance measurements
In the realm of particle physics, the distinction between matter and antimatter is a crucial one. The fundamental building blocks of the universe, such as quarks and mesons, exhibit a peculiar behavior known as oscillation. The ability of particles to spontaneously transform into their antimatter counterparts and vice versa adds a layer of complexity to
In a groundbreaking collaboration between the University of Barcelona and Sensofar Tech, a team of experts has developed a cutting-edge technology for capturing three-dimensional images of study samples with unprecedented speed, accuracy, and non-invasiveness. Published in Nature Communications, this innovative system represents a significant advancement in optical profilometry, a widely used technique in various industries,