The potential for quantum computers to revolutionize various industries such as human health, drug discovery, and artificial intelligence is undeniable. However, one of the major challenges faced by the research community is the reliable connection of billions of qubits at the atomic level. Traditional methods of forming qubits in silicon have been random and imprecise,
Science
Optical waves have been manipulated for various applications such as imaging, communication, and directed energy. The traditional systems used for this wavefront manipulation have been large and cumbersome, limiting their utilization to high-end applications. However, a recent study has introduced a free-standing microscale photonic lantern spatial mode multiplexer that marks a significant advancement in photonic
In a groundbreaking initiative, the Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) introduced its precision measurement program in May 2022. The program, led by the Low Energy Beam and Ion Trap (LEBIT) facility staff, involves cooling high-energy, rare-isotope beams to a lower energy state before measuring specific particle masses at high
The University of California, Los Angeles (UCLA) has made a groundbreaking achievement in the field of optical imaging technology. Researchers at UCLA have developed an all-optical complex field imager that has the capability to capture both the amplitude and phase information of optical fields without the need for digital processing. This advancement is poised to
In a recent study published in Advanced Science, a research group successfully developed a Ni34Co8Cu8Mn36Ga14 single crystal with a remarkable 5% magneto-superelasticity. This breakthrough was achieved by introducing arrays of ordered dislocations to create preferentially oriented martensitic variants during the magnetically induced reverse martensitic transformation. The Research Process Led by Prof. Jiang Chengbao and Prof.
Recent advancements in quantum computing have opened up new possibilities for solving complex problems at significantly faster speeds compared to classical methods. A recent paper published in Science Advances highlights the findings of researchers from JPMorgan Chase, Argonne National Laboratory, and Quantinuum regarding a quantum algorithmic speedup for the quantum approximate optimization algorithm (QAOA). This
Plants have the remarkable ability to produce an electric potential as they draw water from their roots to nourish their stems and leaves. This electric potential, if harnessed properly, could serve as a sustainable and continuous source of renewable energy. However, it is essential to consider the impact of the circadian rhythm – the biological
The use of nonlinear light microscopy has completely transformed the way we observe and comprehend complex biological processes. However, with this advancement comes a significant concern – the potential damage that light can inflict on living matter. Despite the vast improvements in imaging capabilities, the mechanism behind the irreversible perturbation of cellular processes by intense
Transition metal dichalcogenide heterobilayers have become a topic of interest due to their potential applications in optoelectronics. In a recent study published in Science Advances, researchers explored the effects of twist engineering on valley polarization in these heterostructures. Twist engineering involves manipulating the twist angle between different monolayers to control excitonic potential and valley properties,
The collaboration between various prestigious research institutions and organizations has led to groundbreaking discoveries in the field of material science. By utilizing the unique environment of space, researchers have identified new opportunities for creating materials that are not readily available on Earth. Through experiments conducted on the International Space Station (ISS), scientists have successfully produced